Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
IEEE J Biomed Health Inform ; 24(10): 2798-2805, 2020 10.
Artigo em Inglês | MEDLINE | ID: covidwho-2282971

RESUMO

Chest computed tomography (CT) becomes an effective tool to assist the diagnosis of coronavirus disease-19 (COVID-19). Due to the outbreak of COVID-19 worldwide, using the computed-aided diagnosis technique for COVID-19 classification based on CT images could largely alleviate the burden of clinicians. In this paper, we propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images. Specifically, we first extract location-specific features from CT images. Then, in order to capture the high-level representation of these features with the relatively small-scale data, we leverage a deep forest model to learn high-level representation of the features. Moreover, we propose a feature selection method based on the trained deep forest model to reduce the redundancy of features, where the feature selection could be adaptively incorporated with the COVID-19 classification model. We evaluated our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP). The accuracy (ACC), sensitivity (SEN), specificity (SPE), AUC, precision and F1-score achieved by our method are 91.79%, 93.05%, 89.95%, 96.35%, 93.10% and 93.07%, respectively. Experimental results on the COVID-19 dataset suggest that the proposed AFS-DF achieves superior performance in COVID-19 vs. CAP classification, compared with 4 widely used machine learning methods.


Assuntos
Betacoronavirus , Técnicas de Laboratório Clínico/estatística & dados numéricos , Infecções por Coronavirus/diagnóstico por imagem , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico por imagem , Pneumonia Viral/diagnóstico , Tomografia Computadorizada por Raios X/estatística & dados numéricos , COVID-19 , Teste para COVID-19 , Biologia Computacional , Infecções por Coronavirus/classificação , Bases de Dados Factuais/estatística & dados numéricos , Aprendizado Profundo , Humanos , Redes Neurais de Computação , Pandemias/classificação , Pneumonia Viral/classificação , Interpretação de Imagem Radiográfica Assistida por Computador/estatística & dados numéricos , Radiografia Torácica/estatística & dados numéricos , SARS-CoV-2
2.
IEEE Trans Med Imaging ; 41(1): 88-102, 2022 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1593541

RESUMO

Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event and the clinical decision of treatment planning. To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites. This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features. In this paper, we propose a novel domain adaptation (DA) method with two components to address these problems. The first component is a stochastic class-balanced boosting sampling strategy that overcomes the imbalanced learning problem and improves the classification performance on poorly-predicted classes. The second component is a representation learning that guarantees three properties: 1) domain-transferability by prototype triplet loss, 2) discriminant by conditional maximum mean discrepancy loss, and 3) completeness by multi-view reconstruction loss. Particularly, we propose a domain translator and align the heterogeneous data to the estimated class prototypes (i.e., class centers) in a hyper-sphere manifold. Experiments on cross-site severity assessment of COVID-19 from CT images show that the proposed method can effectively tackle the imbalanced learning problem and outperform recent DA approaches.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Tomografia Computadorizada por Raios X
3.
Med Image Anal ; 69: 101978, 2021 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1062515

RESUMO

How to fast and accurately assess the severity level of COVID-19 is an essential problem, when millions of people are suffering from the pandemic around the world. Currently, the chest CT is regarded as a popular and informative imaging tool for COVID-19 diagnosis. However, we observe that there are two issues - weak annotation and insufficient data that may obstruct automatic COVID-19 severity assessment with CT images. To address these challenges, we propose a novel three-component method, i.e., 1) a deep multiple instance learning component with instance-level attention to jointly classify the bag and also weigh the instances, 2) a bag-level data augmentation component to generate virtual bags by reorganizing high confidential instances, and 3) a self-supervised pretext component to aid the learning process. We have systematically evaluated our method on the CT images of 229 COVID-19 cases, including 50 severe and 179 non-severe cases. Our method could obtain an average accuracy of 95.8%, with 93.6% sensitivity and 96.4% specificity, which outperformed previous works.


Assuntos
COVID-19/diagnóstico por imagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Aprendizado Profundo , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Índice de Gravidade de Doença , Aprendizado de Máquina Supervisionado , Tomografia Computadorizada por Raios X , Adulto Jovem
4.
Med Image Anal ; 68: 101910, 2021 02.
Artigo em Inglês | MEDLINE | ID: covidwho-943426

RESUMO

The coronavirus disease, named COVID-19, has become the largest global public health crisis since it started in early 2020. CT imaging has been used as a complementary tool to assist early screening, especially for the rapid identification of COVID-19 cases from community acquired pneumonia (CAP) cases. The main challenge in early screening is how to model the confusing cases in the COVID-19 and CAP groups, with very similar clinical manifestations and imaging features. To tackle this challenge, we propose an Uncertainty Vertex-weighted Hypergraph Learning (UVHL) method to identify COVID-19 from CAP using CT images. In particular, multiple types of features (including regional features and radiomics features) are first extracted from CT image for each case. Then, the relationship among different cases is formulated by a hypergraph structure, with each case represented as a vertex in the hypergraph. The uncertainty of each vertex is further computed with an uncertainty score measurement and used as a weight in the hypergraph. Finally, a learning process of the vertex-weighted hypergraph is used to predict whether a new testing case belongs to COVID-19 or not. Experiments on a large multi-center pneumonia dataset, consisting of 2148 COVID-19 cases and 1182 CAP cases from five hospitals, are conducted to evaluate the prediction accuracy of the proposed method. Results demonstrate the effectiveness and robustness of our proposed method on the identification of COVID-19 in comparison to state-of-the-art methods.


Assuntos
COVID-19/diagnóstico por imagem , Infecções Comunitárias Adquiridas/diagnóstico por imagem , Diagnóstico por Computador/métodos , Aprendizado de Máquina , Pneumonia Viral/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , China , Infecções Comunitárias Adquiridas/virologia , Conjuntos de Dados como Assunto , Diagnóstico Diferencial , Humanos , Pneumonia Viral/virologia , SARS-CoV-2
5.
IEEE Trans Med Imaging ; 39(8): 2595-2605, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: covidwho-690930

RESUMO

The coronavirus disease (COVID-19) is rapidly spreading all over the world, and has infected more than 1,436,000 people in more than 200 countries and territories as of April 9, 2020. Detecting COVID-19 at early stage is essential to deliver proper healthcare to the patients and also to protect the uninfected population. To this end, we develop a dual-sampling attention network to automatically diagnose COVID-19 from the community acquired pneumonia (CAP) in chest computed tomography (CT). In particular, we propose a novel online attention module with a 3D convolutional network (CNN) to focus on the infection regions in lungs when making decisions of diagnoses. Note that there exists imbalanced distribution of the sizes of the infection regions between COVID-19 and CAP, partially due to fast progress of COVID-19 after symptom onset. Therefore, we develop a dual-sampling strategy to mitigate the imbalanced learning. Our method is evaluated (to our best knowledge) upon the largest multi-center CT data for COVID-19 from 8 hospitals. In the training-validation stage, we collect 2186 CT scans from 1588 patients for a 5-fold cross-validation. In the testing stage, we employ another independent large-scale testing dataset including 2796 CT scans from 2057 patients. Results show that our algorithm can identify the COVID-19 images with the area under the receiver operating characteristic curve (AUC) value of 0.944, accuracy of 87.5%, sensitivity of 86.9%, specificity of 90.1%, and F1-score of 82.0%. With this performance, the proposed algorithm could potentially aid radiologists with COVID-19 diagnosis from CAP, especially in the early stage of the COVID-19 outbreak.


Assuntos
Infecções por Coronavirus/diagnóstico por imagem , Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Pneumonia Viral/diagnóstico por imagem , Algoritmos , Betacoronavirus , COVID-19 , Infecções Comunitárias Adquiridas/diagnóstico por imagem , Humanos , Pandemias , Curva ROC , Radiografia Torácica , SARS-CoV-2 , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA